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Abstract 

We theoretically and experimentally investigate the biases 
and the variances of Fast Fourier transform (FFT) spectra es- 
timates with different windows (data tapers) when used to an- 
alyze power-law noise types j”, j-l, j-’ and j”. There is a 
wide body of literature for white noise but virtually no investiga- 
tion of biases and variances of spectra estimates for power-law 
noise spectra commonly seen in oscillators. amplifiers, mixers, 
etc. Biases (errors) in some csaas exceed 30 dB. The experi- 
mentd techniques introduced here permit one to andyzc the 
performance of virtually any window for any power-law noise. 
This makes it possible to determine the level of a particular 
noise type to a specified statisticd accuracy for a particular 
window. 

I. Introduction 

Fast Fourier transform (FFT) spectrum andyzers are very 
commonly used to estimate the spectra density of noise. These 
instruments often have severd different windows (data tapers) 
available for analyzing different types cd spectra. For example, 
in some applications spectral resolution is important: in others, 
the precise amplitude of a widely resolved line is important; and 
in still other applications, noise andysis is important. These 
diverse applications require different types of windows. 

We theoretically and experimentally investigate the biases 
and variances of FFT spectra estimates with di&rent windows 
when used to andyze a number of common power-law noise 
types. There is a wide body of literature for white noise but tir- 
tudly no investigation of these dfects for the types of power-law 
noise spectra commonly seen in oscillators, amplifiers, mixers, 
etc. Spe&cally, we present theoretical results for the biases 
associated with two common windows - the uniform and Han- 
ning windows - when applied to power-law spectra varying 
as j”, j-l and j-‘. We then introduce experimentd tech- 
niques for accurately determining the biases of any window and 
use them to evaluate the biases af three diflemt windows for 
power-law spectra varying ar j”, j”, j’s and j”. As an ex- 
ample we find with j -’ noise that the uniform window can have 
errors ranging from a few dB to over 30 dB, depending on the 
length of span of the j-’ noise. 

We have dso theoretically investigated the variances of 
FFT spectrd estimates with the uniform and Harming windows 
(confidence of the estimates) M a function of the power-law 
noise type and bs a function of the amount d data. We in- 
troduce experimental techniques that make it relatively eary to 
independently determine the variance of the spectrd estimate 
for virtually any window on any FFT spectrum analyzer. The 
variance that is realized on a particuhr instrument depends not 
only on the window but on the specific implementation in both 
hardware and software. We find that the variance d the spec- 
trd density estimates for white noise, j”, is very similar for 
three specific windows available on one instrument and dmost 

identicd to that obtained by standard statistical analysis. The 
variances for spectra density estimates of j-’ noise are only 
4% higher than that of f” noise for two of the windows stud- 
ied. The third window - the uniform window - does not yield 
usable results for either js3 or j-’ noise. 

Based on this work it is now possible to determine the 
minimum number d samples necessary to determine the level 
of a particular noise type to a speciSed statisticd accuracy hs a 
function d the window. To our knowledge this was previously 
possible only for white noise - dthough the traditiond results 
are generally valid for noise that varied as jm8, where 3 was 
equd to or lesr than 4. 

II. Spectrum Analyzer Basics 

The spectrum andyzer which was used in the experimen- 
td work reported here is fairly typicd of a number d such in- 
strumenta currently available from various manufacturers. The 
basic measurement process generally consists of taking a string 
of N. = 1024 digitd samples of the input wave form, which we 
represent here by Xi, X2, . . ., XN,. The b&c measurement 
period was 4 ms. This yields a sampling time At = 3.90625 ps. 
Associated with the FFT of a time series with .V, data points, 
there are usually (N,/2) + 1 = 513 frequencies 

j, = f 
N,At ’ 

j =O,l (. . . ( Y,/2. 

The fundamentd frequency jt is 250 Hz, and the Nyquist fre- 
quency fN,/s is 128 kHz. Since the spectrum andyzer uses 
an anti-abasing filter which significantly distorts the high frc 
quency portion of the spectrum. the instrument only displays 
the mesaved spectrum for the lowest 400 nonzero frequencies, 
namely, jr = 250 Hz, j2 = 500 Hz. . . ., j.00 = 100 kHz. 

The exact details of how the spectrum analyzer estimates 
the spectrum for X1, . . ., XN, are unfortunately not provided 
in the do cumentation supplied by the manufacturer, so the fol- 
lowing must be regarded only as a reasonable guess on our part 
as to its operation (ra [l] for a good discussion on the basic 
idead behind a rpcctnrm andyzer; two good general references 
for spectral andyrir are [2] and [4]). The sample mean, 

Rm +& 
is subtracted from esch d the samples, and each of these “de- 
meaned” samples is multipled by a window h, (sometimes called 
b dbtb tb&MX) t0 PdUCe 

x’*’ = hI (X, - 2). I 

The spectral estimate, 

2 

s,(f,) = At 2 X!A)e-‘z*hlAr , j = 0.1.. *.V,/P* 
IS1 
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IS then computed using an FFT algorithm. 
The subscript “1” on Sl( f,) indicates that this is the rpec- 

tral estimate formed from the first block of .v, samples. .4 
similar spectral estimate $( f,) is then formed from the second 
block of contiguous data XN,+I, X,V,+?, . . ., XZN,. In dI, there 
an .vb different spectra estimated from Nb COntipOU blodrs, 
and the spectrum analyzer averages these together to form 

(1) 

It is the statistical properties of $f,) with which we are con- 
cerned in this paper. 

Unfortunately some important -p&s of the windows are 
not provided in the documentation for the instrument. One im- 
portant detail is the manner in which the window is normdizcd. 
There are two common normalizations: 

5 [h, (X, - X)]’ = + F (X, - X)l 
t-1 l 111 

and 

ch: = 1. (2) 
1=1 

The first d these is common in engineering applications became 
it ensures that the power in the windowed samples X1*’ is the 
same as in the original demeaned samples; the second is equiv- 
alent to the first in expectation and is computationdy more 
convenient, but it can result in small discrepancies in power 
levels. Either normalization affects only the level of the spec- 
tral estimate and not its shape. 

There are three windows built into the spectrum andyzer 
used here. The first is the uniform (rectsnylsr, default) win- 
dow hi” = l/fl,. The second is the Harming data window, 
for which there are several slightly different definitiona in the 
literature. In lieu of specific details, we assume the foIIowing 
symmetric definition: 

here CtH) is a constant which forcea the normalization in Equa- 
tion (2). The third window ia a proprietary %ttened peak 
window, about which littk qeci& information is available (it 
is evidently designed to accurately measure the heights of peaks 
in a spectrum). 

when the uniform window is used, i.e., the expected Vaue is 
trpice what it should be at dl frquencies. This theoreticd re- 
sult has been v&&d by Monte Carlo simuiations. but it does 
not agree with our expaimentd data, which shows no signifi- 
cant level shift in the estimated spectrum. The source of this 
diacrepMcy is cummtly under investigation, but it may be due 
to eitha (a) facton in the experimentd data which etTectively 
make it band-limited, mdom-walk noise, i.e.. its spectral shape 
is markedly d&rent from f -2 for, say, 0 < f < fi or (b) an 
incorrect guess on our part M to how the spectra estimate is 
normalizeI by the spectmm andyzer. For the Harming window, 
we found that 

III. Expected Value and Biu of Spectral Etiimatcr 

1II.A. Thcorctic8l Anrlyrir 

We need to assume a noise model for the Xc’s in order 
to determine the statisticd properties of S( fj) in Equation (1). 
We consider three diflerent a~&&, es& oi which is repnrnkd 
in terms of a Gaumisa white noiee process cl with mean ow 
and variance uf . The eecond-orda properties d cub model 
are given by a spectrd density function S(.) de&n& over the 
interval [-1/(2At), 1/(2At)] in cycles/At. The i&t model is a 
discrete parameter, white noise proceas (p noise): 

1 

l.oSS(fj) j s 1; 
1.4gS(f,) j = 2; 

mfd = 
l.lSS(f,) j = 3; 
l.O’IS(f,) j = 4: 
l.OrS(f,) j = 5; 
S(fj) 6 5 j 5 511 to within 3%. 

. 

i.e., S(fj) ia atially uI unbiased spectrd estimate except 
for the lowest few frequencies. This theoretied result has been 
verifed by Monte Carlo simulations and also agces in generd 
with our expexirnentd data. 

Third, for a random-w process, 

X 1 = Cl and S(f) = afAt. E&f,)) = CN,f-'9 1 s j 5 400. 

The second model is a discrete-parameter. random-waik process 
(nomindly f -’ noise): 

The third model is a discrete-parameter. random-run process 
(nominally f -’ noise): 

and S(f)= a,2At 

16sin’ (nfd) 

Continuous parameter versions of these three models have been 
used extensively in the literature M models for noise commoniy 
seen in odIatota. 

Foe each of the three modeIs we have derived expressions 
for E{S(f)}, the expected value of S(f). These expressions 
depend on the window h,, the number of samples .V. in each 
block and - in the case of a random-nm process - the num- 
ber of blocks N,. The details behind these cdculations will be 
reported elsewhere (31; here we merely summarize our conclu- 
sions for the three models in combination with the uniform and 
Haming windows and N, = 1024. 

First, for a white noise process, 

&{$f,)) = s(f)), j = 1.2,. . . ,512, 

when the uniform window is used. For the Harming window, 
the above equality alao holds to a very good approximation for 
2 s j 5 511 and to within 0.8 dB for j = 1 and 512 (the latter 
is d no practicd importance since the highest frequency index 
given by the spectrum andyzer is j = 400). These thcoreticd 
cdculations agree with our experimentd data except at fl (m 
Table 1). 

Second, for a random-walk process, 

E{S(fj)) =2S(f,), j = w-,512. 
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to a good appoximation when the uniform wmdow is used. 
where C,v, is a constant which depends on the number of blocks 
.Vb and increaKs as .Vb increases. Thus the shape of E{ S(fi )} 
follows that of a random-walk process (f-l) rather than that 
of a random-nm process (f”). This shape has been verified 
experimentally (see the next subsection), but the dependence 
of the level on :Vb has not. The increase in level of E{ s(f))} M 
.Vb increases is due to the fact that the expected value of the 
sample variance of a block of N, samples increws with time 
- by contrast. it is constant with time for the white noise and 
random-walk cases. For the Harming window, we found that 

We = G,S(fi)> 4~j~400, 

to a good approximation, where again CL, is a constant - 
different from C.V, - which depends on the number of blocks 
.vb and increases as N, increares. For frequencies less than 
f4 the theoretical results indicate significant (greater than 4%) 
distortion in the shape, but these do not agree in detail with the 
experimental values reported in Table 1. For f, 2 f4 the shape 
has been verified experimentdly, but the dependence of the level 
on H, has not. The discrepancy in level between the theoreticd 
and experimentd results is yet to be resolved, but it is probably 
due to a mismatch between the assumed random-nm model and 
the true spectrum for the data (possibly band-limited random- 
rUtI). 

3) ?hmre Filtar ntiu Rmctlm h(f) 

nua 

$2 

7 1 

B(f) - sum(f) - 3(f) sm(ft) 

Figure 1. Outline of meuumnent procedure for determining 
the hisses in spectrd eatimatora. 

1II.B. Experimental Determination 

The following procedure can be used to experimentdly de- 
termine the bias in the spectrd estimate of any noise spectrum 
using any window in a particular instnunent. The basic concept 
is to implement a filter that, when applied to white noise, mim- 
ics the approximate noir spectra d interat and then measures 
the level of the white noise and the filter transfer function in a 
way which has high precision and accuracy M illustrated in Fig- 
ure 1. First, the level of a known white noise is measured over 
a convenient range. The higher the frequency span the faster 
that this is accomplished. Obviously, the chosen range must 
be one over which the noise source is accurate. To obtain a 

precision of order 0.2 dB generdly requires 1000 samples. Th:s 
memement verifies that the spectral density function and the 
internd reference voltage of the FFT are accurately calibrated 
and working properly. Virtually dl of the windows accurately 
determine the value of white noise if the first few channels zue 
ignored M explained above. Figure 2 shows the measurement 
of a noise source. which hss been independently determmed to 
have a noise spectral density of 99.8 dBV/Hz by the three win- 
dows. (Appendix A shows the circuit diagram for this noise 
source which has an accuracy of better than 0.2 dB for frequen- 
cies from 20 to 20 kHz.) 

-SS 
e(v) 

I 
m 

/OIV 
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Figure 2. Spectral estimation of a white noise standard us 
ing the uniform, Harming and the proprietruy battened peak” 
windows. 

Second, an approximately flat spectrum is measured over 
the frequency range of interest. It is not important if there are 
small variations in the level that change slowly over the fre- 
quency span. Third, the transfer function of the filter is deter- 
mined for the frequencies of interest using a very narrow spectral 
source (typically an audio oscillator is sufficient). The very nar- 
row source is accurately measured by the window since there is 
no problem with either high frequency or low frequency noise 
biasing the estimate. The use of a window with a flattened peak 
response is helpful but not necessary if the frequency source is 
su&iently stable. This transfer function is then applied to the 
meMvcd white noise spectrum in step two above. This yields a 
very accurate value for the ‘true” spectral density d the white 
noise source M meanred through the filter. This “true value” is 
then compared to that obtained by the FFT analyzer. The dif- 
ference between that m ensured in steps two and three and that 
measured directly with the FIT is the biad in the spectrd esti- 
mate for that particular window and noise type. The accuracy 
of this approach corned from the fact that the calibration has 
been broken up into steps that can individually be determined 
with high precision and very small bias. The primary assump 
tion ir that the FFT &yzer is linear. Even this assumption 
can be checked by using precision attenuators. If the known 
white noiae in rtep one doed not extend to the frequencies of 
interest, then there is an additiond assumption that the FFT 
is flat with frequency. This assumption is nearly dways good 
except perhaps near the 1-t few channels where the effect of 
the antidiaaing filter might cause small inaccuracies. 

Figurea 3s and 3b show the Yrue” spectral estimate and 
the estimates M measured on a particular instrument using the 
uniform, Han&g, and the instrument’s proprietary “battened 
peak” windws for noise that varies as j-’ over much of the 
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Figures 3a (top) and 3b (bottom). Difference between the true 
spectrum (top) which varies approximately as f-’ and that 
estimated by the uniform, Harming and proprietary “Battened 
peak” windows (bottom). 

range from 1 kHz to 100 kHz. The scan is 0 to 100 kXz, and 
1000 samples were taken for all curves. Note the considerable 
dikence between the spectral estimates for channela 1 to 3 for 
the Hanning and proprietary battened peak” windows. These 
results confirm the theoretical calculations above showing that, 
for the Harming window, the first 3 charmeb should be ignored. 
For the “htened peak” window, the 6mt 14 channels should 
be ignored. For both f” and f -’ noise, the uniform window 
does not yield usable spectral estimates over any portion of the 
scan. Note in this example that at frequencies above 80 kHz 
there is a small step in the spectrd estimates. This is due 
to digitizing errors of the signd due to quantization. If the 
digitizer had more bits, these mom would not occur. This 
problem of dynamic range is common whenever the spectrum of 
interest covers many decades. The usud solution is to use filters 
to divide the spectrum into various frequency range segments 
which are suitable for the dynamic range of the FFT. 

Table 1 summarizes the measured experimentd biases in 
the spectral estimates of a particular instrument with three dif- 
ferent windows for power-law noise types Varying from f” to 
f -‘. This covers most of the random types of noise found in os- 
cillators and signd processing equipment. We do noi advocate 
using the biases reported in this table to correct data - they 

Table 1. Approximate Biases m FFT Spectral Estl.nates 

noise type /O 

channel # lldOI7ll Harming flattened peak 

1 19.6 dB 19.6 dB 20.1 d.B 

2 smdl small 16.7 dB 

3 1 1 7.2 dB 

4 small 

5 1 

noise type f-’ 

channel # unifolm Harming flattened peak 

1 unusable 8.6 dB 10.0 dB 

2 0.4 dB 9.1 dB 

3 0.4 dB 4.0 dB 

4 small 1.2 dB 

5 1 1.1 dB 

6 1.1 dB 

7 1.0 dB 

8 0.8 dB 

9 0.6 dB 

10 0.6 dB 

11 0.5 dB 

12 0.4 dB 

13 0.4 dB 

14 small 

15 1 

only indicate which channels should not be relied upon for data 
andysis. 

IV. Variances of Spectral Estimates 

IV.A. Theoretical Analysis 

We have derived expressions for uar{S(f)} - the variance 
of S(f) - for each of the three models considered in Section 
IILA. These expressions depend primarily on the number of 
blocks Nb. Again, the details behind thm calculations will be 
reported elsewhere [3]. 

First, for a white noise process, the uniform window yields 

while the Harming window yields 

i 

0.69P(fi)/Nb, I = 1; 
v'&f,)) = s2(f>)/:vb, 2 5 j 5 510; 

l.O3s?(f,)/N,, j = 511. 

These results are consistent with our experimental results and 
with standard statisticd theory. 

Second, for a random-walk process, the uniform wmdow 
yields 
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whiie the Harming window yieids 

’ 1.30S2(f,)/.V,, j = 1; 
2.20S2(f,)/N,, j = 2; 
1.3lsz(f,)/N‘, j = 3; 

d%f,)) = 4 
l.lSSs(fi)/N*, j = 4; 
l.09Sr(ft)/N*, j = 5; 
I.06Sz(fj)/N~v j = 6; 
1.04S2(f,)/N,, j = 7; 

\ ~(f,)INbv 8 5 j 5 511 to within 3%. 

Except for the few lowest frequencies, the results for the Han- 
ning window agree with our l xperimentd results and with stan- 
dard statisticd theory; however, the factor of five in the variance 
for the uniform window disagrees with our experiments and with 
standard theory (dthough it has been verified by Monte Carlo 
techniques). The cause of this discrepancy is under inveatiga- 
tion, but we think it is due to the band-limited nature of the 
experimentd data 

Third, for a random-run process, the variance computa- 
tions are not useful since the variance is dominated by the fact 
that the expected value of the sample vsriance for each block of 
samples increases with time. The agreement which we found bo 
twun standard statisticd theory and our experimentd results 
on the 1 fN, rate of decreeee of variance is undoubtedly due 
to the band-limited nature of the expelimentd data. We will 
attempt to verify these conclusions in the future using Monte 
Carlo techniques. 
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Figure 4. Comparison of the spectral atimate of f” powr- 
law noise with 1009 samples with that obtained with 32 sam- 
ples. The text explains how thaw twn curvw are used to obtain 
the fractiond RMS cnz&dence of the spectral eatimate for 32 
samples. 

W.B. Experimental Determination 

The following procedure cm be used to expuimentdly de- 
termine the variance of the spectra eetimatu of virtually any 
type of noise spectrum with any type of window for a particular 
instrument. Since the spectral density d interest is in general 
nonwhite, we must determine both the LYrue value” and a way 
to normalize the fractiond error of the estimate as a function 
of the number of samples. Tbis can be done by making use 
of the above theoreticd andysis that shows that the variance 
should decrease as the square root of the number d samples 
since they are approximately statistically independent (in fact, 
exactly so in the cases of white and random-walk noise). As an 

example we have chodn to take .Vb = 1000 biocks of :he ‘;b70~ 
power-law noise types examined in 1II.B above and compare the 
value of the spectral estimate with that obtained from .Vb = 32 
blocks (see Figure 4). Since the variance of the 1000 block data 
is about 32 times smaller than that of the 32 block data. it can 
me as an accurate estimate of the “true value.” Let Slccc( f, ) 
represent this quantity at the j-th channel (frequency). By sub 
tracting the 1000 block data from the 32 block data at the J-th 
channel, we then have one estimate of the error for the 32 block 
data; by repeating this procedure over N, different channels 
and N, d&rent replications, we can obtain accurate estimates 
of the variance for the 32 block data. Let Sz2,( f,) represent the 
spectra estimate for the 32 block data at the j-th channel and 
the i-th replication. To compensate for the variation in the level 
of the spectral estimates with channel, it is aeces-sary to divide 
the error at the j-th channel by the “true value” Slooo(f,). The 
mum square fractional mor of the 32 block data for the noise 
type under study is given by 

NV 2 
1 

42 = NN 
cc( 

S32,(f,) - slooo(f,, 
r C,rl J S,oooCf,, ) 

=s 
~af{S324fi)l 

sl(fJ) 

It is assumed that aU channels with bias - as indicated in Ta- 
ble 1 - have been excluded in the s ummationoverj. Itisalso 
important that the changes in the spectral density not exceed 
the dynamic range of the digitizer because under this condition 
the quantization errors - in addition to causing biases in the 
spectrd estimates as discussed earlier - can lead to situations 
where the variance does not improve as Nb increases. These val- 
ues can be scdcd to any number of blocks N, if care is taken to 
avoid these quantization errors. Upper and lower approximate 
67% &dence hits for S(fj) - the true spectral density at 
channelj - using Harming, uniform snd the proprietary dat- 
tend peak” windows for Nb approtitely independent blocks 
are given by 

where S( f,) is the spectra estimate given by Equation (1) and 
V(a, Nb) is the fractional vsriance given in Table 2 for f o and 
a = 0, -2, -3 and -4 (these results were obtained by averaging 
over N,N, = 1200 channels). The variances obtained are very 
close to those obtained from standard statistical analysis for 
white noise. i.e.. . , 

s(f,+++F) . 

Table 2. Con6dence Intervals for FFT Spectral Estimates 

power law window 
noise type uniform H-+5 flattened peak 

f2 
r.o2/lm 0.98JJm; 0.981 fi 

1.02/a 1.04/%/X l.WdF 

f -3 unusable 1.04/m 1.04/J% 

f -4 unusable 1.04lJm; 1.04IVX 

V. Conclusions 

We have introduced experimentd techniques to evaluate 
the statistical properties of FFT spectral estimates for common 
noise types found in oecillators, amplifiers. mixen and similar 
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dcv:ces. and we have compared :hese with :heoreucd cdcxk- 
uons UC have used these recbques to study the blues and 
variances of FFT spectral emmares using the umform. Haa- 
rung. and a propnttary 7Iatttned peak” endow. The theo- 
rctlcd analysis was greatly hampered because the instnrment 
manufacturtr does not ciirlose the exact form of the ~attcntd 
peak” window or the normalization proc&rt for the other win- 
dows. ?itvtrtheitu. we obtuned fair agreement bctmn tht 
theoretical and the txptientd andysis. The nriancc~ of 
the spectral tstimatron were vinudly identical to a few per 
cent for p to f-’ noise except for the uniform rindow which 
IS incapable of mersunng noise w&h fails ~47 furer than f”. 
There vu a very large difktnct rn the biua d the 6rst few 
chsumtls for the three nndows. The Harming window showed 
siyficant bism in the first 3 chsnntle while the proprietary 
“flattened peak’ window showed large biuer for f” noiat tvtn 
up to channel 13. The Harming window therefore yields useful 
information over three trmes wrda frequency range than the 
proprietary qatttntd peak” window. In the particular instru- 
mtnt studied. the proprietary ‘YIattened ptak” riodow is the 
best choice for estimating the height of a narrow band source, 
while the Harming wmdow is by far the best choice for spectrd 
andysls of common noise types found in orciliaton. amplifiers, 
muters. etc. We have dso shown that rht 67% confidence levels 
for spectra estimation LII a function of the number of contiguous 
nonoverlapping biocks. S,. is approxirnartiy pvtn by 

for white noise (f” ) Md by 

5=5,(1*~) 

for noise types fS3 to f“. This apts to nthin 4% of that 
found by standard statisticd andyas for white noise. Csmg 
thus data one can now dtterrmnt the number of sunpies nec- 
essazy to estimate - to a gvtn level of statisticd uncmunty 
- the spectrum of the vmous nose typa commonly found UI 
oscillators, amplifiers. mixm. etc. 
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Figure 5. Circuit diagram d a precision noise source: 

Appendix. Pmision Noima Source 

Figure 5 shows the circuit diagram d A pr&sion aoiat 
source whae spectrd dePrity can ht determined from 6nt prin- 
ciples to f0.2 dB over the kqutncy range from 20 Hz to 20 kHz. 
The spectral density is basically given by the Johnson noise d 
the 10’ ohm resistor. vi = 4kTR. where 7’ is in Kelvin, and k is 
Boltrmann’s constant. Comtions due to the input noist volt- 
age and noi- current d the amplifier amount Lo about 0.2 dB 

for the circuit timrents shown. All resiston are prtcislon iR 
metd film rcrircon. The output level can be sntchtd from 
-100 dBV/Hz to -80 dBV/Hz. By adjusting the noise-garr. ca- 
puitorr one can make the noise spectrum fi~r to wrtlun 0.3 dB 
out fo 200 kHt. There is dao provtsion to measure the :nput 
noise vdty of the amplifier by shorting the input to ground 
or the combined noise voltage and noise went by switching a 
220 pF capacitor into the input mssttad of the 10” ohm noise 
resistor. 
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